Machine learning touches our lives in quiet and remarkable ways. It helps doctors detect illnesses sooner by recognizing subtle patterns in scans and helping them make sense of medical data with speed, judgment, and care. It helps us care for our fields and forests by tracking changes that unfold over time. It helps us study the weather with a memory far longer than our own, and notices small signs that equipment may soon need attention. And when we find ourselves in unfamiliar places, it helps us translate words, find our bearings, and discover new corners to explore. And yet, even as it becomes part of daily life, its inner workings can still feel distant when you first encounter them. Fundamentals of Machine Learning aims to bring it within reach. This book offers a clear and steady introduction to how machines learn from data. It explains how models begin to understand, decide, improve, and sometimes falter. Ideas build gradually, one upon another, supported by real examples and datasets in R. The focus is insight over jargon, clarity over complexity. As these ideas become familiar, they also hold the promise of supporting the works of scientists, engineers, and students — by opening new pathways of exploration. Inside the Book • How learning algorithms discover patterns • Supervised, unsupervised, and other ways machines learn • Regression, decision trees, neural networks, and more • Working with data and understanding results • Ethics, fairness, and responsible use Warm, practical, and approachable, Fundamentals of Machine Learning encourages readers to build confidence step by step, to make sense of new ideas in their own time, and to discover how understanding machine learning can enrich the way we work, learn, and see the world.
We ship worldwide - see checkout for options
Exceptional customer service trusted by 100's



Reviews
There are no reviews yet.